Bankruptcy prediction models based on multinorm analysis: An alternative to accounting ratios

نویسندگان

  • Javier de Andrés
  • Manuel Landajo
  • Pedro Lorca
چکیده

0950-7051/$ see front matter 2011 Elsevier B.V. A doi:10.1016/j.knosys.2011.11.005 ⇑ Corresponding author. Address: Faculty of Econom Oviedo, Avda. Del Cristo s/n, 33006 Oviedo, Spain. Te E-mail address: [email protected] (J. de Andrés). In this paper we address the bankruptcy prediction problem and outline a procedure to improve the performance of standard classifiers. Our proposal replaces traditional indicators (accounting ratios) with the output of a so-called multinorm analysis. The deviations of each firm from a battery of industry norms (computed by nonparametric quantile regression) are used as input variables for the classifiers. The approach is applied to predict bankruptcy of firms, and tested on a representative data set of Spanish firms. Results indicate that the approach may provide significant improvements in predictive accuracy, both in linear and nonlinear classifiers. 2011 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Bankruptcy of Companies using Data Mining Models and Comparing the Results with Z Altman Model

One of the issues helping make investment decisions is appropriate tools and models to evaluate financial situation 0f the organization.  By means of these tools, investors can analyze financial situation of the organization and identify financial distress or an ideal condition, they become aware of making decisions to invest in appropriate conditions.  The main objective of this study is to ev...

متن کامل

Designing a Bankruptcy Prediction Model Based on Account, Market and Macroeconomic Variables (Case Study: Cyprus Stock Exchange)

The development of the Cyprus Stock Exchange together with the increasing trend of investors’ presence in financing activities has led to the importance of this market. In such circumstances, the first step towards a sustainable development of the Exchange is to support the investors. Risk of bankruptcy for the investee is a major challenge that an inexperienced stock investor encounters. In th...

متن کامل

Using the Imperialistic Competitive Algorithm Model in Bankruptcy Prediction and Comparison with Genetic Algorithm Model in Listed Companies of Tehran Stock Exchange

Bankruptcy prediction is a major issue in classification of companies. Since bankruptcy is extremely costly, investors, owners, managers, creditors, and government agencies are interested in evaluating the financial status of companies. This study tried to predict bankruptcy among companies registered in Tehran Stock Exchange (Iran) by designing imperialist competitive algorithm and genetic alg...

متن کامل

Investigating Financial Crisis Prediction Power using Neural Network and Non-Linear Genetic Algorithm

Bankruptcy is an event with strong impacts on management, shareholders, employees, creditors, customers and other stakeholders, so as bankruptcy challenges the country both socially and economically. Therefore, correct prediction of bankruptcy is of high importance in the financial world. This research intends to investigate financial crisis prediction power using models based on Neural Network...

متن کامل

Bankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach

 In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2012